
Journal of Computational Physics 229 (2010) 1353–1380
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A self-adaptive oriented particles Level-Set method for tracking interfaces

S. Ianniello *, A. Di Mascio
INSEAN, Italian Ship Model Basin, Rome, Italy

a r t i c l e i n f o
Article history:
Received 12 March 2009
Received in revised form 28 July 2009
Accepted 16 October 2009
Available online 28 October 2009

Keywords:
Tracking interface
Oriented particles
Level-Set
Numerical method
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.10.034

* Corresponding author. Tel.: +39 0650299328; fa
E-mail address: s.ianniello@insean.it (S. Ianniello
a b s t r a c t

A new method for tracking evolving interfaces by lagrangian particles in conjunction with a
Level-Set approach is introduced. This numerical technique is based on the use of time evo-
lution equations for fundamental vector and tensor quantities defined on the front and rep-
resents a new and convenient way to couple the advantages of the Eulerian description
given by a Level-Set function / to the use of Lagrangian massless particles. The term ori-
ented points out that the information advected by the particles not only concern the spatial
location, but also the local (outward) normal vector n to the interface C and the second
fundamental tensor (the shape operator) rn. The particles are exactly located upon C
and provide all the requested information for tracking the interface on their own. In addi-
tion, a self-adaptive mechanism suitably modifies, at each time step, the markers distribu-
tion in the numerical domain: each particle behaves both as a potential seeder of new
markers on C (so as to guarantee an accurate reconstruction of the interface) and a de-see-
der (to avoid any useless gathering of markers and to limit the computational effort). The
algorithm is conceived to avoid any transport equation for / and to confine the Level-Set
function to the role of a mere post-processing tool; thus, all the numerical diffusion prob-
lems usually affecting the Level-Set methodology are removed. The method has been
tested both on 2D and 3D configurations; it carries out a fast reconstruction of the interface
and its accuracy is only limited by the spatial resolution of the mesh.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The tracking of a moving interface C represents a key-point in the numerical simulation of free-surface and multiphase
flows appearing in many mathematical and engineering problems. The interest in the topic is witnessed by the uncountable
papers and books published on this issue and the wide variety of involved research fields, covering aerospace, naval and steel
industry, many environmental, geophysical and medical applications, wide branches of computer graphics and digital image
processing. Generally speaking, the problem can be treated by Lagrangian and Eulerian methods. In the first case, the inter-
face evolution is followed by some marker advected with the front velocity; in the second one, a new variable (a Level-Set
function, a volume fraction, the density) is introduced in the model to identify different flow domains with respect to a fixed
grid. In between lie mixed Eulerian–Lagrangian approaches, where the grid moves to fit the actual front position; these ap-
proaches have the advantage of providing an accurate description of the interface motion, thus making easier to impose of
the surface tension forces and, in general, the boundary conditions on C. Nevertheless, they are used only when the displace-
ments of the interface are small, because the related grid distortion can cause an intolerable loss of accuracy. Of course, wave
breaking or large topological changes cannot be handled by methods of this kind.
. All rights reserved.

x: +39 065070619.
).

http://dx.doi.org/10.1016/j.jcp.2009.10.034
mailto:s.ianniello@insean.it
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

1354 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
In the context of Lagrangian approaches we certainly have to include the particles mesh-free methods, introduced in the
sixties. There, the interface motion is tracked by massless markers moved by the velocity field independently of any mesh.
The markers can be placed in the whole computational domain, as in the pioneering marker and cell (MAC) method [1], or
concentrated just upon C to exactly track the interface time evolution with a smaller computational effort (see, for example,
[2]). The particles are often coupled to an Eulerian method in order to achieve a more accurate description of both motion
and the relevant interface’s geometrical characteristics. As mentioned above, in standard Eulerian approaches an additional
unknown is introduced to represent the interface and an additional equation to model its time evolution. In the volume of
fluid (VOF) method, introduced by DeBar [3] and subsequently improved by Noh and Woodward [4], Hirt and Nichols [5],
Lafaurie et al. [6] and Gueyffier et al. [7], this unknown corresponds to the mass (volume) fraction of one of the fluids.
The new variable characterizes each cell of the computational domain and can be equal to 0, 1 or some intermediate value
at the grid cells containing the first fluid, the second fluid or the interface, respectively. A transport equation is solved for the
volume fraction and the reconstruction of C is carried out by computing the mass fluxes among adjacent cells with a pro-
cedure of geometrical nature. For this reason, the method exhibits very good mass-preserving properties and a satisfactory
tracking of the interface, especially when the piecewise linear interpolation construction (PLIC) [8] is adopted. Nevertheless,
the interface appears as a discontinuous surface at the cells boundaries, so that the computation of the curvature (required to
evaluate the surface tension forces) is not simple and still represents a research issue [9]. Moreover, the use of a straight line
to represent C inevitably flattens the regions characterized by high curvature, so that the interface can be broken when its
thickness is comparable to the grid spacing. As a result, filaments are artificially divided and coalesce into some blobs of
numerical nature. Classical reviews of the volume tracking methods can be found, for instance, in [10,11].

In Level-Set methods [12] the new unknown is represented by a signed distance function /: the sign of the function deter-
mines the mutual position of the fluid domains and the interface is represented by the zero level of the function itself. A
transport equation governs the time evolution of the Level-Set function field, but in this case no mechanism enforces mass
conservation. Thus, such a physical, fundamental requirement is somehow demanded to the accuracy of the numerical
scheme adopted to solve the transport equation. For this reason, high order ENO (essentially non-oscillatory) and WENO
(weighted essentially non-oscillatory) schemes are the most used algorithms in the Level-Set community. The method pro-
vides a continuous representation of C which accounts automatically for possible topological changes; furthermore, the
knowledge of the function / enables the estimation of the most important geometrical features of the interface, as the local
normal vector and the curvature. To this aim, however, the Level-Set function must be often reinitialized through a further
equation, since its property of being a distance function is lost during the advection [13]. It’s worth noting that also the reini-
tialization may provide an additional numerical diffusion, so that different reinitialization techniques have been developed
to improve mass conservation [14–16].

In the last decades, a lot of numerical approaches were developed in the attempt of suitably combining the advantages of
both Lagrangian and Eulerian techniques to achieve an optimum interface reconstruction algorithm. Just to mention some
examples, in [17] a multi-fluid flow is treated by solving the Navier–Stokes equations on a stationary finite difference grid,
while the sharp interface separating the fluids is tracked by an additional moving interface mesh. A combination of Lagrang-
ian markers to the VOF method is realized in [18,19], while in the CLSVOF (coupled Level-Set and volume of fluid) method a
mixed Eulerian scheme couples the good mass conservation properties of VOF with the accurate surface curvature recon-
struction of the function / [20–22]. In the Point-Set method [23], unconnected markers are used to determine an indicator
function through a B-Spline interpolation, which somehow couples certain features of both the VOF method and the Level-
Set approach. In the immersed boundary (IB) methods, originally developed for cardiovascular flows [24], the incompress-
ible/compressible flow equations are solved in the whole domain in Eulerian variables, while a Lagrangian viewpoint is
adopted for the simulation of an embedded flexible structure, here representing the interface. A review of the immersed
boundary methods is reported in [25].

A further approach is the smoothed particle hydrodynamics (SPH) method [26,27], where the markers are put in the flow
with mass and velocity and exhibit a mutual influence at a prescribed distance from each others. Also this method can han-
dle large interface deformations and topological changes automatically and guarantees the mass conservation, since the par-
ticles themselves represent mass (although the volume is not preserved). One drawback over grid-based techniques is the
need for a large number of markers and the requirement of some graphic approach to provide a continuous, renderable free
surface geometry. An exhaustive review of the SPH method can be found in [28].

In the framework of the possible combinations between different numerical techniques, a significant role is played by the
particle Level-Set (PLS) method developed in [30] and subsequently refined in [31]. Here, Lagrangian massless markers are
randomly located near the interface, passively advected by the flow and locally used to correct the Level-Set function in
poorly resolved regions, where the loss of mass occurs. The PLS method proved to be really effective in the improvement
of the C reconstruction process provided by a standard Level-Set procedure; it is able to carry out very realistic simulations
of fluids, so as becoming the reference approach for a large part of the graphics community. Also in the PLS method, however,
the Level-Set function plays the primary role in tracking the interface. Despite the proved efficiency of the particles, the C
time evolution is substantially governed by the transport equation for / and the massless markers are used to locally correct
the errors arising from the numerical diffusion, mainly related to the computation of the spatial term r/.

The interface tracking procedure proposed in this paper takes the PLS method as a starting-point and inverts the afore-
mentioned roles played by the particles and the Level-Set function by linking the interface geometrical parameters (the nor-
mal and tangent vectors and the second fundamental tensor) to the particles and by making these quantities to evolve in

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1355
time through some well-defined evolution equations. The Lagrangian markers placed on C become the leading mechanism in
tracking the interface and are used to rebuild the front very accurately by a high order Runge–Kutta integration. In other
words, the particles dictate the time evolution of C, whereas the function / becomes a post-processing tool, used to
turn the interface into a continuous function, to be coupled to other field equations (e.g. the Navier–Stokes equations). Unlike
the PLS method, it is the transport equation of / which is now used to correct possible numerical inaccuracies and make the
algorithm more robust; this equation, however, does not govern the process so that no numerical diffusion (related to the
computation of the term r/) can affect the solution. An effective seeding algorithm has also been developed to manage,
at each step, the particles distribution and check the accuracy of the C reconstruction process. Based on a Taylor expansion
series of the function /, the procedure uses the updated geometrical quantities associated to the particles to refine their dis-
tribution in presence of a large stretching and deformation of C. The method is fast and quite easy to implement. It has been
tested on typical two-dimensional problems and on a very severe three-dimensional test-case (by exploiting the analytical
knowledge of the velocity field) and has always provided an impressively accurate interface reconstruction.

The structure of the paper is the following. Section 2 is devoted to a summary of the Level-Set methodology and the cor-
responding numerical problems. The results obtained through a PLS-based code are presented, in order to show some fea-
tures of the method and to recall some typical test cases (like the vortex in a box) studied in the following. In Section 3, some
issues reported in [30] on the capability of surface-markers to correctly trace a 2D shrinking square are discussed. The ori-
ented particles and their coupling with the Level-Set function are introduced in Section 4, by deriving the evolution equation
for the normal vector to C, by describing how the function / can be estimated through the updated particles location and by
pointing out the most important features of the procedure through the numerical results achieved on the vortex in a box and
the so called Zalesak’s disk problem. The evolution equations for the second fundamental tensorrn and any tangent vector t
to C are discussed in Section 5, by pointing out the relation of t to the interface stretching. Section 6 points out the intrinsic
drawbacks of a tracking interface method based on the sole use of Lagrangian markers and deals with the well-known, crit-
ical 3D Enright test-case to show how the aforementioned weak-points can affect the numerical results. Within this context,
the use of the / transport equation and the curvature evolution equation are also treated. Finally, Section 7 introduces the
proposed self-adaptive oriented particle Level-Set method, by equipping the algorithm with an automatic procedure, able to
manage undesired spatial clustering and/or depletion of markers. Section 8 shows some results concerning the simulations
of a shrinking and expanding cube (where interface merging occurs) and Section 9 draws conclusions.

2. Summary of Level-Set methods

As is well known, the Level-Set method is based on the use of a level function / characterized by the following properties
/ðx; tÞ > 0 x 2 X

/ðx; tÞ 6 0 x R X
where X represents an open region in Rn and the / zero level represents the interface C � Rn�1 whose motion we are inter-
ested in. This motion is determined by a velocity field u, which gives rise to the following transport equation for /
@/
@t
þ u � r/ ¼ 0 ð1Þ
The level function / is usually initialized as a signed distance function and enables the computation of some fundamental
geometrical quantities for C, as the unit normal vector
n ¼ r/
jr/j ð2Þ
and the curvature
j ¼ r � n ¼ r � r/
jr/j

� �
ð3Þ
Nevertheless, due to the time evolution, the role of a signed distance function is immediately lost by /, and in order to min-
imize numerical errors it is convenient to reinitialize the function at each time step by solving the equation
@/
@s þ Sð/0Þðjr/j � 1Þ ¼ 0 ð4Þ
where s represents a fictitious time and Sð/0Þ is the sign function, often smeared in numerical applications [32]. It’s worth
mentioning that from a numerical standpoint the reinitialization process has to be coded carefully, since it should not alter
the / zero level representing the interface. The solution of Eq. (1) strongly depends on the adopted numerical scheme. As is
well-known, the use of simple first-order finite difference schemes (both in time and in space) suffers a notable numerical
diffusion which appears as a loss of mass. This behaviour can even get worse by the reinitialization procedure, which always
represents an approximated process and should be avoided as much as possible [33] (for example, through the so-called
extension velocities technique [34]). Diffusion problems can be alleviated by using more suitable high-order finite difference

1356 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
schemes. As suggested in [29], a 5th order WENO scheme for the computation of the spatial term r/ can be successfully
combined with a 3rd order TVD Runge Kutta procedure for time integration. Nonetheless, even these schemes can be not
sufficient to trace C in a accurate way, especially when the interface exhibits certain critical configurations characterized
by thin filaments or some corner points. For this reason, typical test cases are used to check the ability of any interface track-
ing algorithm, and two problems have become very popular in the literature for 2D problems: the Zalesak’s disk and the vor-
tex in a box test-cases. The first test (originally introduced in [35]) refers to a rotating circular interface with a rectangular
notch, immersed in a velocity field corresponding to a solid body rotation: although in the exact solution the disk evolves
maintaining its shape unaltered, in numerical simulations the region of the sharp corners of the notch rapidly deteriorates
because of diffusion errors. In the second problem, a circular interface undergoes a strong deformation under the action of a
vorticity field; in this case, C exhibits a progressive thinning which severely tests the algorithm capability in resolving thin
filaments and dealing with loss of mass.

In the attempt of achieving a further improvement on diffusion problems, Enright et al. proposed the particle Level-Set
(PLS) method by randomly inseminating a limited region around the interface with massless particles of different size
[30]. The markers are initially associated with each side of the interface, i.e. are set positive or negative depending on their
location with respect to C. Then, they are moved by the same velocity field acting on the Level-Set function and therefore
should remain on the proper side of / since the interface represents a contact discontinuity. When this requirement is
not fulfilled (because of numerical diffusion) the sign of the updated / is wrong and must be corrected. In this situation,
the radius of the escaped markers plays the role of a local Level-Set function and is used to change the value of / at the nodes
of the computational domain. The PLS method has been successfully tested both on 2D and 3D configurations and, at present,
can be considered the most effective way to code the Level-Set technique for tracking interfaces. In a subsequent paper, it
was shown that the correction provided by the particles even makes useless the adoption of high-order finite difference
schemes [31].

As the PLS method is recognized as the state-of-the-art among the numerical approaches for tracking interfaces based on
the Level-Set methodology, this procedure was taken as a reference-point to check the capability of the method proposed in
this paper; to compute our reference numerical data, a PLS-based code has been implemented by using the same parameters
suggested by the authors in [30]. Then, the vortex in a box test case has been taken into account and treated by a rather fine
ð100� 100Þ Cartesian mesh, with the aforementioned high-order finite difference schemes. The starting circular interface
has a radius r ¼ 0:15 and is centered at (0.5,0.75) in a unit square domain, while the velocity components are given by
uðx; yÞ ¼ �2 sinðpyÞ cosðpyÞ sin2ðpxÞ
vðx; yÞ ¼ þ2 sinðpxÞ cosðpxÞ sin2ðpyÞ
Fig. 1 shows the comparison of the interface determined at t ¼ 3 by a standard LS approach (on the left) and the PLS code (on
the right). It is easy to recognize the effectiveness of the PLS method in limiting the loss of mass due to the numerical dif-
fusion and the improvements achieved in tracking the interface both at the nose and, above all, the tail of the vortex.

In spite of the good results achieved by the PLS method, some problems can be still recognized. First of all, the local char-
acter of the corrections provided by the particles can give rise to a rather irregular behaviour of the zero level representing
the interface. This can be irrelevant for computer graphics purposes, but may represent an undesirable limit for hydrody-
namic simulations, where an accurate estimation of the curvature is required to determine surface tension effects. Further-
more, many particles must be used to achieve an effective correction of the zero level of /, most being never used in the
correction process itself. Thus, the computational effort is generally relevant and can become prohibitive for three-dimen-
sional problems.

To better understand these important issues, Fig. 2 shows the comparison between the PLS solution (top figures) and the
‘‘exact” configuration of the vortex (bottom figures) at t ¼ 5, when C is characterized by the presence of very thin filaments.
The results have been obtained on a finer ð200� 200Þ mesh and by using approximately 6 � 104 particles placed on both
Fig. 1. Comparison of the Level-Set (left) and the particle Level-Set (right) solutions for the vortex test-case at t ¼ 3.

Fig. 2. The PLS solution at t ¼ 5 (top figures) exhibits a rather ragged profile on the outer rings of the vortex and a not negligible fragmentation compared to
the exact interface (bottom figures).

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1357
sides of the interface. The agreement is quite satisfactory and the use of the particles (combined with the higher spatial mesh
resolution) provides a very limited loss of mass. Nevertheless, the outer rings of the vortex locally exhibit a notable fragmen-
tation, especially at the vortex tail region, and a very irregular profile. This behaviour is highlighted in the comparison of the
zoom views reported in the same figure. The irregularities can be probably alleviated by increasing the number of markers or
using some refinement techniques. Substantially, however, they cannot be removed since they depend on how the particles
are used in the correction process. The results here reported perfectly mirrors the analogous results in [30].
3. Lagrangian markers and merging fronts

Before introducing the oriented particles, it’s worthwhile to briefly discuss a further 2D test-case proposed in [30] and
concerning a shrinking square where each side is advected with a constant speed normal to the front itself. Such a particular
configuration was used by the authors to demonstrate that a pure Lagrangian front-tracking model is not able to trace the
interface correctly when merging of fronts occurs.

This problem is rather anomalous since a discontinuity occurs (at the square corners) on the normal vector to C and, con-
sequently, on the corresponding component of the velocity. Nevertheless, in this paper we will show that a merging front
problem can be handled successfully by Lagrangian particles provided that the particles are managed in the proper way.

Fig. 3 shows the starting configuration of both the interface and the velocity field, where the velocity direction is defined,
as in [30], by the unit normal vector n computed through the Level-Set function and Eq. (2). In this problem, however, the
cell vertices close to the corners are affected by the presence of the discontinuity and an error occurs in the evaluation of the
velocity. This error is obviously transferred to the particles, whose velocity components are determined through a simple
bilinear interpolation of the values at the grid vertices. The situation is clearly shown in the left Fig. 4, where the markers
and the corresponding velocity vectors at the top-left corner of the square are reported at the starting time t ¼ t0 and at
t ¼ 5Dt (where we set Dt according to the CFL condition, with juj ¼ 0:01). From the figure it is clear that the particles
approaching the corner do not move correctly, their motion being retarded with respect to both front sides. For this reason,
a slender filament appears along the diagonal. This behaviour was clearly described in [30] and gives rise to the subsequent
configurations of C depicted in the right Fig. 4 (at t ¼ 20Dt and t ¼ 40Dt, respectively), characterized by an undesired wake
shed by the square corners.

Nevertheless, this behaviour is not to be ascribed to the Lagrangian markers but to the way in which the velocity is as-
signed to them via the Level-Set function derivatives. As a matter of fact, in the formulation of the problem an entropy con-
dition must be enforced to make the solution unique and remove the undesired solutions. In this case, if no condition at all is
enforced within the simulation, the point close to the corner would go beyond the diagonal and would give rise to a multi-

Fig. 3. Shrinking square: initial interface configuration C0 and the velocity field.

Fig. 4. Left figure depicts the particle velocities at the top-left corner of the square, as incorrectly determined through the use of the n ¼ r/=jr/j vector.
The right figure shows the initial configuration (dashed–dotted line) and the interface traced at two subsequent steps.

1358 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
valued solution. Although the velocity field depicted in Fig. 3 (computed as in [30]) seems to be conceived to yield a single
value solution (i.e. with the fronts merging and the locally correct direction), the magnitude of the resulting velocities is not
sufficient to preserve the two fronts straight. Then, the corners are left behind with respect to the rest of the interface. We
want to underline again that the problem does not concern the use of particles, but rather the way in which the velocity field
is computed. We will come back on this interesting issue in Section 9.
4. The oriented particles

As already mentioned, in [31] it was shown how the use of Lagrangian markers made the use of high-order finite differ-
ence schemes to solve the transport equation for / redundant. In fact, the effectiveness of the massless particles to correct
locally the Level-Set function enables the use of a simple (and fast) first-order upwind scheme for computing the spatial term
r/. In this manner, it also becomes easier to use some adaptive mesh technique and achieve an accurate interface recon-
struction in a reduced CPU time. Such a high potential of the particles has been recognized for a long time. However, our
feeling is that it has not yet been fully exploited.

This last assertion can be appreciated by looking at the bottom Fig. 2, where the exact interface configuration is traced by
using a huge number of particles placed on C and moved by the 3rd order Runge–Kutta integration. There’s no doubt that the

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1359
markers exactly located on the interface provide a more accurate information about the shape of the interface; nevertheless,
positive and negative particles around the interface have to be used in the PLS method in order to identify the two domains.
The basic idea of the oriented particles is to link this fundamental information to the particles themselves. To this aim, at the
starting time t0 we put Np particles upon the interface and evaluate, at each particle location x ¼ xP , the local (outward) nor-
mal vector n ¼ nP to C. Obviously, the time evolution of xP is determined by
Fig. 5.
highligh
dx
dt
¼ u ð5Þ
where u ¼ uP is the velocity vector at xP . Similarly, an evolution equation of the corresponding normal (unit) vector can be
easily determined by taking the gradient of the evolution equation for /:
Dn
Dt
¼ @n
@t
þ u � rn ¼ @

@t
r/
jr/j

� �
þ u � r r/

jr/j

� �
ð6Þ
or, in terms of vector components (by using the Einstein summation convention on repeated indices)
Dni

Dt
¼ @

@t
/;i

jr/j þ uj
@

@xj

/;i

jr/j ¼
/;it

jr/j �
/;i

jr/j3
/;k/;kt þ uj

/;ij

jr/j �
/;i

jr/j3
/;k/;kj

()

¼ 1
jr/j f/;it þ uj/;ijg �

/;i/;k

jr/j3
f/;kt þ uj/;kjg ¼

1
jr/j

@

@xi
ð/;t þ uj/;jÞ � uj;i/;j

� �
�

/;i/;k

jr/j3
@

@xk
ð/;t þ uj/;jÞ � uj;k/;j

� �

¼ �uj;inj þ uj;knjnkni
since
/;t þ ui/;i ¼
D/
Dt
¼ 0
Thus, Eq. (6) can be rewritten as
Dn
Dt
¼ �uj;injei þ uj;knjnkn ð7Þ
ei being the three base unit vectors. Note that, although we used the relation between n and / to derive Eq. (7), the Level-Set
function does not appear any longer and the time evolution of the normal vector only depends on the velocity field (through
the term ru) and n at the current time step. In this way, starting from an initial configuration n ¼ n0 (at t ¼ t0) we can use
the same 3rd order Runge–Kutta integration used for solving Eq. (5) to compute n at subsequent steps and follow the time
evolution of the normal vector to C. The coupled solution of Eqs. (5) and (7) removes the need of accounting for positive and
negative particles of the PLS method, since at any time step the nP vector related to the particle xP uniquely identifies the two
separated domains. For this reason the markers are called oriented particles. In order to show the capability of Eq. (7) in track-
ing the time evolution on the outward normal vector to C, Fig. 5 shows the numerical solution for the vortex at t ¼ 2. For the
sake of clearness, only 200 particles have been taken into account in the left figure to show the global normal distribution to
the interface, while the right figure highlights the accuracy of the numerical result around the tail region of the vortex, char-
acterized by a cusped shape and here traced by 1000 markers. In order to prevent possible accumulation of numerical errors,
at each step n is explicitly normalized to maintain jnj ¼ 1. It is important to note that even though the particles provide a
discrete representation of the interface, they cannot be used to trace it in a direct way (by any data-fitting procedure), since
no connection law exists between two subsequent markers. Thus, we still need the Level-set function / to trace C and for
The left figure shows the distribution of n related to 200 oriented particles, as determined for the vortex test-case t ¼ 2. On the right, the zoom view
ts the accuracy of the normal vector distribution computed on the cusped tail region of the interface.

Fig. 6. The Level-Set function at the vertices of an interface cell is carried out by the scalar product of the minimum distance vectors (dashed–dotted lines)
and the outward normal vectors associated to the corresponding closest particles.

1360 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
this reason the procedure has been named the oriented particle Level-Set method. However, the / zero level can be deter-
mined through the oriented particles in a very simple and fast way.

In fact, by a single loop on the particles we can identify the interface cells (i.e. the cells containing at least one particle)
and compute the distance between their vertices and the markers. This distance is updated within the loop in order to iden-
tify the minimum value and, consequently, the closest marker with respect to each vertex of the mesh. Then, the Level-Set
function at the vertices of any interface cell is provided by the scalar product between the minimum distance vector and the
corresponding particle (unit) normal vector.

The procedure is outlined in Fig. 6, where the minimum distance vectors at the cell vertices A and B are depicted by a
dashed–dotted line and the corresponding function / has a sign that depends on the sign of the scalar products rA � nA

and rB � nB, respectively. The knowledge of the signed distance function at all cells vertices straddling the interface enables
the initialization of a solver devoted to the evaluation of the function / in the whole numerical domain through the Eikonal
equation
Fig. 7. Contour plots of the level-set function field ð/ > 0Þ determined for the vortex at t ¼ 3 through the oriented particles and the fast sweeping method.

Fig. 8.
configu

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1361
jr/j ¼ 1 ð8Þ
Fig. 7 shows the contour plots of the function / field; the computation was carried out by an Eikonal solver based on the
fast sweeping method [36]. Here, we have used the fine ð200� 200Þmesh with 2000 oriented particles and the negative lev-
els have been removed in order to make the picture clearer. It’s worth noting that the whole simulation, including a step-by-
step solution of Eq. (8) (2400 steps with Dt set to 1.25E�3) has required less than 17 s of CPU time on a PC equipped with a
(single) Xeon processor at 2.5 Ghz; this value cannot be assumed as an absolute measure of the CPU requirements, but it has
to be intended as a qualitative measure of the order of magnitude for CPU time burden.

At this stage, it is useful to point out the following issues:

1. The oriented particles are totally unrelated, since the time evolution of each particle and the corresponding normal vector
does not depend on the others. Such a feature is very important, since it allows to handle data in an unstructured fashion.
This is extremely desirable for both parallel coding and the seeding procedure introduced in the following.

2. The time evolution of the interface is determined without any transport equation for /. Thus, no diffusion problem affects
the numerical solution, whose accuracy depends only on the time integration. Of course, this is true for the present exam-
ple, where the analytical values of the velocity field and its derivatives are available. In a hydrodynamic simulation, where
the velocity components are determined at the mesh nodes, spatial discretization errors occur because the velocity field
must be transferred from the nodes to the particles by means of some data-fitting procedure. In any case, the inaccuracies
related to the numerical discretization of the spatial termr/ are completely removed. It’s worth noting that although the
function / simply plays the role of a post-processing tool for tracking C, its use is useful to maintain unaltered the struc-
ture of all the existing solvers based on the Level-Set methodology.

3. The use of an Eikonal solver and the step-by-step numerical solution of Eq. (8) replaces any separate reinitialization pro-
cess on /: at each time step the computed Level-Set function is exactly the signed distance function we need at the nodes
of the Cartesian mesh. In three-dimensional simulations, where the computing effort rapidly increases, the evaluation of
/ can be suitably limited to a prescribed distance from the particles.

In order to appreciate the performances of the new method, Fig. 8 shows the vortex interface at t ¼ 5, corresponding to
Fig. 2 and obtained through the use of the oriented particles.

The zoomed views highlight the accuracy of the numerical result with respect to the PLS approach and the notable sim-
ilarity with the exact solution. In practice, the only appreciable discrepancies are due to the spatial resolution of the mesh
and occur when C is so thin as to be included in a single cell; this situation gives rise to the fragmentation of the vortex tail
appearing in the same figure. In this case the sign of the Level-Set function is the same at the vertices of the interface cell and
the Eikonal solver fails to determine the / function field locally. It’s interesting to note that such singular cells (containing
some markers but exhibiting the same sign of the function / at its vertices) are easily identified and could be somehow trea-
ted by some adaptive mesh technique. The fundamental difference, however, between the use of the (oriented) particles and
the solution of Eq. (1) for tracking interface stands in the persistence of the particles: the information is never lost and cannot
be numerically diffused. Even when C stretches into very thin filaments and the Eikonal solver fails to recognize the interface
cells, the particles are still there and go on with the evolution. Moreover, in the present model the markers exactly represent
all points of the interface and their location dictate, at each step, the values of the function / at the mesh nodes. Therefore,
the main difference with the PLS method is that the particles are not used to correct locally the zero level of / determined by
the transport equation, but rather to evaluate it explicitly. In this way, the aforementioned high potentiality of the particles is
fully exploited.

Fig. 9 shows eight consecutive contour plots of / for the vortex in a box test-case, where the simulation (performed by
5 � 103 markers in the fine 200� 200 mesh) lasts 20 and is characterized by an inversion of the velocity field at t ¼ 10. As
expected, the interface suffers a strong thinning and appears as a fragmented filament. Nevertheless, the field computed by
The numerical solution for the vortex at t ¼ 5 exhibits a regular profile even on the outer rings of the vortex, very similar to the exact interface
ration reported in the bottom Fig. 2.

Fig. 9. Contour plots of the level-set function field for the vortex in a box test-case, with a motion inversion at t ¼ 10. The notable fragmentation of zero
level of /, due to the occurrence of very thin filaments, does not jeopardize the perfect recomposition of the starting circular C at t ¼ 20.

1362 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
the Eikonal solver through the use of the oriented particles always represents the best achievable result according to the spa-
tial resolution of the mesh. Moreover, the starting circular interface is perfectly rebuilt at the end of the simulation.

Fig. 10 shows the contour plots of the function / carried out by 2 � 103 oriented particles for the Zalesak’s disk test-case.
As before, the starting circular interface ðr ¼ 0:15Þ is centered at (0.5,0.75), while the velocity field is characterized by the
following components
uðx; yÞ ¼ þpðy� 0:5Þ
vðx; yÞ ¼ �pðx� 0:5Þ
The simulation covers five complete disk revolutions (each being completed in a time interval equal to 2) and the figure
shows / as determined by the Eikonal solver at eight different time steps. As expected, the zero level of / is perfectly main-
tained during the rotation and no distortion affects the aforementioned critical region of the corner points, up to the end of
the simulation.
5. Evolution equations for the second fundamental tensor and the tangent vectors

In Section 4 we derived the evolution equation of the (outward) normal vector to the interface and showed how to deter-
mine the Level-Set function field from the oriented particles. Numerically, we could evaluate the curvature j at the mesh
nodes from Eq. (3) and, then, on the particles through an interpolation procedures. A further evolution equation, however,
can be derived forrn, the second fundamental tensor of the surface C (whose trace exactly corresponds to j), which is then

Fig. 10. Contour plots of the level-set function field for the Zalesak’s disk test-case. The last frame corresponds to t ¼ 10, at the end of the fifth disk
revolution.

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1363
considered as an additional quantity linked to the markers. In this way, the set of data passively advected by the oriented
particles completely define the local interface geometry and still remain independent of the evaluation of the function /
on the Eulerian mesh. For clarity, we recall Eq. (7), written in terms of components
Dni

Dt
¼ uj;knjnkni � uj;inj
and determine the spatial derivative of this equation. The left-hand side reads
Dni

Dt

� �
;s
¼ @ni

@t
þ uj

@ni

@xj

� �
;s

¼ @ni;s

@t
þ uj

@ni;s

@xj
þ uj;sni;j ¼

Dni;s

Dt
þ uj;sni;j
whereas the right-hand side becomes
½uj;knjnkni � uj;inj�;s ¼ uj;ksnjnkni þ uj;knj;snkni þ uj;knjnk;sni þ uj;knjnkni;s � uj;isnj � uj;inj;s
Then, the evolution equation for rn can be written in the following form
Dni;s

Dt
¼ uj;ksnjnkni þ uj;knj;snkni þ uj;knjnk;sni þ uj;knjnkni;s � uj;isnj � uj;inj;s � uj;sni;j ð9Þ
The right-hand side of this equation exhibits, for each particle, the first and second spatial derivatives of the velocity
(which can be determined through the aforementioned data-fitting procedures when only a discrete u field is available),
the normal vector components (known from Eq. (7)) and the tensor components ni;j whose time evolution we are looking
for. Then, starting from an initial value of such a second-order tensor rnjt¼t0

, Eq. (9) is integrated forward in time through
the usual Runge–Kutta solver and provides, at each step, the interface curvature corresponding to the particles by the
relation
j ¼ trðrnÞ ¼ ni;i ð10Þ
In order to test the capability of Eq. (9) in determining the time history of the interface curvature, we still refer to the
vortex in a box test case and run the simulation up to t ¼ 1:5 when the velocity field is inverted. Top Fig. 11 shows the three
configurations of C at t ¼ 0, 1.5 and 3 and the instantaneous position of four different particles whose time evolution has
been analysed.

As expected, the last interface configuration perfectly matches the starting one. Nevertheless, the most interesting result
is reported in the bottom figures showing the time histories of the curvatures j corresponding to the selected points and

-6

-3

 0

 3

 6

 9

12

15

 0 1.5 3

P1
P3

-50

 50

 150

 250

 350

 450

 0 1.5 3

P2
P4

Fig. 11. Top figures show the interface configurations of the vortex at three subsequent time steps of an inverted motion (tinv ¼ 1:5 and four oriented
particles used for computations. At the bottom, the corresponding four time histories of the curvature j are reported.

1364 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
determined by Eq. (9). At t ¼ 0;j ¼ 1=r (being r ¼ 0:15) at all the oriented particles of the circular interface. During the sim-
ulation the curvature at points P1 and P3 fluctuates rather close to the starting value, while at P2 and P4 a large gradient oc-
curs, since the corresponding particles move along the tail and the nose of the vortex where j attains the highest values.
Note the negative values of j at P3, a marker associated to an outward normal vector pointing towards the local center of
curvature (as in the configuration at t ¼ 1:5 reported in the top-center figure). Furthermore, as expected, all the time histo-
ries for j show a perfect symmetry with respect to t ¼ 1:5, the instant when the motion is inverted. For completeness, Table 1
provides the numerical values of the curvature at the aforementioned points, where it can be seen that the discrepancies
between the starting and final configurations (i.e. the numerical errors due to the integration procedure) are very limited.

There is another important quantity related to the particles that is convenient to compute during the time evolution of C.
Corresponding to each particle P, any tangent vector t to the interface is a function of both the space variables x and time t
and is defined as
Table 1
Curvatu

t ¼ 0
t ¼ 1
t ¼ 3
t ¼ tðx; tÞ ¼ @x
@n

ð11Þ
where n represents a curvilinear coordinate on C. By fixing the particle P, the material time derivative of this quantity can be
written
dt
dt

����
x¼xP

¼ @t
@t
¼ d

dt
@x
@n

� �
¼ @

@n
dx
dt

� �
¼ @u
@n

ð12Þ
The gradientrnu appearing on the right-hand side can be expressed in terms of Cartesian components in the following form
@ui

@n
¼ @ui

@xj

@xj

@n
¼ @ui

@xj
tj
so that Eq. (12) (in terms of components) reads
re values at the four Pi oriented particles highlighted in Fig. 11 for the inverted motion of the vortex in a box test-case.

P1 P2 P3 P4

:0 0.666e+01 0.666e+01 0.666e+01 0.666e+01
:5 0.221e+01 0.388e+03 �0.176e+01 0.121e+03
:0 0.660e+01 0.667e+01 0.671e+01 0.671e+01

Fig. 12.
corresp

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1365
@ti

@t
¼ @ui

@xj
tj ð13Þ
It’s essential to note the link between the time derivative of the tangent vector t and the spatial term ru, a quantity di-
rectly related to the rate-of-strain tensor. In other words, the evolution of t is related to the deformation of the velocity field
and, consequently, to the deformation of C during the time evolution. In order to demonstrate this last assertion, Eq. (13) has
been solved for the vortex in a box test case, by computing the vectors t on the starting circular interface and assigning to
their magnitude the unit value. For clarity, only 100 oriented particles have been used. The resulting configurations at t ¼ 0,
1.5 and 3 are shown in Fig. 12, where the tangent vectors are reported. It is evident that jtj increases at points where the
curvature of C decreases, according to the tendency of the particles to spread out. It will be shown, in the following sections,
how the behaviour of these vectors can be exploited to check the possible clustering or depletion of markers on the interface
and to change their spatial distribution during the numerical simulation.
6. Failure of the algorithm

At this stage the oriented particles represent a comprehensive set of data which enables to trace C in a very fast and accu-
rate way. Through the evolution equations derived in the previous sections they provide, at each time step, the mutual loca-
tion of the subdomains, the local outward normal vector and curvature on C and even the possible stretching suffered by the
interface during its motion. Unfortunately, there is an implicit weak-point in the sole use of Lagrangian markers: the spatial
distribution of the particles. If the markers must govern the interface tracking process, two obvious questions arise imme-
diately: how many particles do we have to use and where do we have to place them?

As a matter of fact, no condition assures that at each step the number and the position of markers adopted for the sim-
ulation are sufficient to provide a correct reconstruction of C and, in our case, the right estimation of the function Sð/Þ.
Fig. 13 shows two typical situations where the oriented particles can fail in tracking C (here depicted by a solid, red line).
In the left figure, the interface is shown at two subsequent time steps (t and t þ Dt) and at three contiguous cells of the com-
putational domain. At time t the outlined procedure for the assignment of the Sð/Þ function at the cells vertices works cor-
rectly; on the contrary, at t þ Dt the center cell C is no longer recognized as an interface cell, since the velocity field causes all
the particles to go out from the cell itself. Although at this step the identification of Sð/Þ at the vertices of C vertices would be
still realizable through the particles in the neighbouring L and R cells, at subsequent steps (when none of these cells will
contain any marker) the sign of the Level-Set function will be not defined in the correct way. In fact, not all mesh nodes actu-
ally straddling the interface are recognized in the initialization of the Eikonal solver, and a local error will affect the evalu-
ation of the zero level of /. Note that the finer is the grid with respect to the marker distribution, the easier is the occurrence
of such void cells during the simulation. An even worse situation is depicted in the right Fig. 13 where again the very coarse
distribution of oriented particles causes an error in the estimation of Sð/Þ: in fact, particle 2 would be identified as the clos-
est marker to the vertex iþ 1; jþ 1 and a wrong sign for the Level-Set function at that node would follow, due to the normal
vector orientation at particle 2. In both cases, the errors arise from an unsuitable distribution of the markers, not sufficient to
represent the interface correctly.

It’s interesting to note that these errors initially give rise to the occurrence of some bubbles within the interface, because
the wrong identification of Sð/Þ at some computational nodes corresponds to an inversion of the two domains. These errors
could be identified and removed with some numerical device capable of analysing the surrounding distribution of the func-
tion, but it would soon become ineffective to manage the general case in three dimensions. In practice, a progressive scatter-
ing of the markers can cause the number of bubbles to grow very rapidly and the interface reconstruction process can easily
become unreliable.

To mend this problem, we could simply increase the starting number of particles in order to assure, in all cells and at each
time step, a sufficient concentration of markers. Obviously, such a solution can provide an impressive increase of the com-
The spatial distribution of the tangent vector to C, determined at three time steps on the vortex for 100 oriented particles. An increasing value for jtj
onds to a larger stretching of the interface.

Fig. 13. Critical configurations where a coarse distribution of the oriented particles make them not able to identify the sign of the Level-Set function at the
vertices of a cell (left figure) or even provide a wrong evaluation of it (right figure).

1366 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
puting cost and, while practicable in 2D simulations, it could be unbearable in 3D. A more reasonable approach could be the
coupling of the oriented particles to the usual transport equation for /. In this context, the Level-Set function should be up-
dated at each time step t according to the field / determined by the Eikonal solver and used, at t þ Dt, to assign the Sð/Þ
value at all cells not containing the particles. In this way, the solution of Eq. (1) helps the markers in the estimation of
Sð/Þ and makes the algorithm more robust. This approach can successfully deal with a pronounced rarefaction of the mark-
ers and possible interface configurations similar to that shown in the left Fig. 13, so that its use is highly recommended. Nev-
ertheless critical situations such as the one described in the right Fig. 13 still appear unsolved, since the oriented particles
dictate the (wrong) values at the vertices of the interface cells. In these cases, a suitable redistribution of the oriented par-
ticles seems to be the only way to deal with the problem.

In order to show a practical occurrence of the aforementioned numerical difficulties and to analyse their own effects on
the interface tracking process, let’s move our attention on a well-known 3D test case. Originally introduced in [37] and pre-
sented again in [30], the problem has been named the Enright test in [32] and consists of a sphere immersed in a velocity
field given by
uðx; y; zÞ ¼ þ2 sin2ðpxÞ sinð2pyÞ sinð2pzÞ
vðx; y; zÞ ¼ � sin2ð2pxÞ sin2ðpyÞ sinð2pzÞ
wðx; y; zÞ ¼ � sin2ð2pxÞ sinð2pyÞ sin2ðpzÞ

ð14Þ
the time modulation being t ¼ 2. As in [30], we use a sphere with r ¼ 0:15, centered at (0.35, 0.35, 0.35) in a cubic compu-
tational domain discretized by a 1003 mesh. At starting time t0 the components of the outward normal vector can be easily
determined at each point x ¼ fxig on the sphere through the relation
ni ¼
xi � xC

i

r
ð15Þ
where xC ¼ fxC
i g and r ¼

ffi
ðx� xCÞ2 þ ðy� yCÞ2 þ ðz� zCÞ2

q
represent the sphere center and radius, respectively. In the exact

solution the sphere, given the flow reversal, recovers its initial shape. Apart for this, this is a severe test for any 3D interface
tracking algorithm, because C undergoes a notable deformation and stretching, to such an extend as to become locally a thin
sheet with a thickness comparable with the grid spatial resolution. The knowledge of n at the oriented particles on the
sphere enables the evaluation of two tangent vectors through the procedure suggested in [38]. Thus, t1 is set to the vector
product between n and the vector with all zero components but a unit component equal to minðjnijÞ. For example, if
nx ¼minfjnxj; jnyj; jnzjg we have
t1 ¼
n� ½1;0; 0�
jn� ½1;0; 0�j ¼ 0;

�nzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

y þ n2
z

q ;
þnyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
y þ n2

z

q
8><
>:

9>=
>; ð16Þ
The additional tangent vector t2 is directly provided by
t2 ¼ n� t1 ð17Þ
From Eq. (15), the curvature tensor rn at t0 in the Cartesian reference reads
@ni

@xj

����
t0

¼ xi;j

r
� xi � xC

i

r2

@r
@xj
¼ dij

r
�
ðxi � xC

i Þðxj � xC
j Þ

r3 ¼ 1
r
ðdij � ninjÞ ð18Þ
dij being the Kronecker delta. The aforementioned quantities represent all the data requested to start the procedure and the
numerical results regarding the interface time evolution are summarized in the subsequent frames reported in Fig. 14.

Fig. 14. The interface time evolution reconstructed by 125 � 103 oriented particles for the Enright 3D test on a Cartesian mesh 1003. Note in the last
frames the presence of the (red-circled) fictitious mass, which arises from a local wrong estimation of the Sð/Þ function. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1367
The pictures show an XZ-view of C in order to enable a direct comparison with the analogous frames published in [30,32];
125 � 103 oriented particles were used for the simulation up to t = 2, with the motion inversion occurring at t ¼ 1. It can be
seen that the sphere is perfectly recomposed at the end of the simulation. Nevertheless, the last frames reveal the presence of
an additional, fictitious mass. This numerical error is due to a too coarse distribution of the oriented particles corresponding
to the thinning of the interface and a wrong estimation of Sð/Þ at some node in the Eulerian grid. Some more details of the
reconstructed surface C can be appreciated in Fig. 15, where together with the usual XZ and XY views two additional view
points (R and K) have been reported. In particular, since the velocity field (14) rotates and stretches the sphere so as to align
it approximately to a diagonal plane with respect to the three-dimensional cubic mesh, some relevant details of the surface
are better appreciated (at t ¼ 1) from these mutually perpendicular views, that together with the XY-view (center Fig. 15)
show the upper side of C more clearly and reveal a remarkably rough central region. As already said, this roughness is
due to the inaccurate estimation of the Level-Set function at the nodes of cells containing the (locally very thin) interface.

In order to better understand the origin of the inaccuracies affecting the computation of the interface, top Fig. 16 shows
the R-view of the zero level of / (on the left) and the corresponding distribution of the oriented particles (on the right).

In spite of the very fine particle distribution adopted ð125 � 103Þ, the markers appear highly concentrated upon the two
curved, lower lobes of the interface and, at the same time, notably sparse upon the upper surface. Here, corresponding to the
particles, the zero level of / exhibits a (correct) void representation and tends to disappear, since the thickness of the inter-
face is locally smaller than the mesh spatial resolution and the Eikonal solver is not able to identify any sign inversion of the
Level-Set function. On the contrary, a local lack of markers on the upper surface gives rise to the jagged outline depicted in
the right Fig. 16, since the procedure fails in recognizing the actual interface cells. In other words, the very irregular shape
occurring on the upper region of the zero level of / is of pure numerical nature. The K-view reported in the bottom Fig. 16
highlights the reduced thickness of C (on the left) and the rather unnatural protuberances occurring on the upper front (right
figure) caused by the incorrect estimation of the Sð/Þ function. Thus, contrary to the usual numerical diffusion caused by
finite difference approximation in standard Level-Set approaches, our Lagrangian-based reconstruction of the interface gives

Fig. 15. The velocity field corresponding to the Enright test deforms the sphere into a stretched manifold which approximately alignes along a diagonal
plane R within the cubic 3D mesh.

1368 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
rise to a sort of additional mass, depending on the local particles distribution and motion and the mesh spatial resolution.
This behaviour is clearly shown in Fig. 17, where three subsequent steps of the Enright test during the return run are de-
picted. The errors due to the wrong estimation of the function Sð/Þ persist up to the end of the simulation, since the particles
do not have any mechanism to remove these numerical inaccuracies on their own.

According to the above discussion concerning the possible failure of the procedure, part of the aforementioned errors can
be removed in a rather simple (and convenient) way by coupling the use of the markers to the solution of the transport equa-
tion for /.

Fig. 18 shows the particles and the corresponding / zero level at the same time steps of Fig. 17, as computed by the aid of
Eq. (1). At t ¼ 1:5 the wrong values of Sð/Þ occurring on the upper surface of C give rise to a rather extended fictitious mass;
the numerical errors, however, are locally repaired by the estimation of Sð/Þ through the transport equation at cells not con-
taining the markers and the fictitious mass somehow disperses in the field. At the final step the error is reduced to some
scattered micro-bubbles. Before concluding the section and suggesting an algorithm to deal with the aforementioned prob-
lems, we note that the numerical solution of the evolution equations for n, t and rn do not exhibit any particular problem
for a three-dimensional configuration. For example, Fig. 19 shows the markers distributions for the Enright test at nine con-
secutive time steps, where each particle color represents the corresponding mean curvature determined through Eq. (9). As
expected, the higher values of j always correspond to the curved boundaries of the manifold and the starting uniform dis-
tribution is perfectly recomputed at the end of the simulation.
7. The self-adaptive oriented particle Level-Set method

The numerical results reported in the previous section prove that the use of the oriented particles for tracking an evolving
interface requires some expedient to check the particles distribution on C and guarantee, at each time step, the correct

Fig. 16. The rough zero level of / determined at t ¼ 1 is due to the coarse distribution of markers occurring on the upper surface of C (top figures). The K-
views reported in the bottom figures show the reduced interface thickness and the presence of some protuberances corresponding to the thinner front.

Fig. 17. The interface of the Enright test during the return run, determined through the only use of oriented particles, is affected by the persistent presence
of a fictitious mass.

Fig. 18. The same interface configurations of Fig. 17 as determined through the aid of the transport equation for /. Here both the zero level of / and the
oriented particles are depicted.

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1369
estimation of the function Sð/Þ at the nodes of the Eulerian mesh. A more sound way to deal with this problem is to make the
oriented particles the seeders of new markers and provide the algorithm with a self-adaptive mechanism, able to recognize
where the particles distribution has to be refined. This fundamental task should be achieved by maintaining the particles

Fig. 19. Time evolution of the oriented particles used for the Enright test: the color at each marker is assigned according to the mean curvature determined
by the evolution equation for rn.

1370 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
unrelated and exploiting the local information provided by the unit (outward) normal vector, the tangent vectors and the
shape operator. In addition, the procedure should also be able to suitably de-seed the interface in the regions where a useless
gathering of markers occurs. In this way, at each time step the updated particles distribution can provide the most accurate
interface reconstruction through the least computational effort.

7.1. The seeding algorithm

For the time being, leave apart where to seed the interface and let us focus our attention on how to do it. From the knowl-
edge of the aforementioned quantities at point xP , we need to locate a new oriented particle on C, by equipping it with the
appropriate values for n, t andrn. This process (seeding) can be realized by expanding in Taylor series the function / around
xP up to the second-order terms
/ ¼ /P þr/jxP
� ðx� xPÞ þ

1
2
ðx� xPÞTrðr/ÞjxP

ðx� xPÞ ð19Þ
where ðx� xPÞ represents the vector position of x with respect to xP and the spatial operator (at xP)rðr/Þ in terms of com-
ponents reads
/;ij ¼
@/;i

@xj
¼ @

@xj
ðnijr/jÞ ¼ ni;jjr/j þ ni

/;k

jr/j/;kj ¼ ni;jjr/j þ nink/;kj ð20Þ
At this stage, we fix a (unit) vector tP at xP tangent to C and express x� xP in the following form
x� xP ¼ b tP þ a nP ð21Þ
The choice of t ¼ tP uniquely identifies one plane a (among11) which contains the unit normal vector nP and a curve C

upon C, as clearly shown in the left Fig. 20. While b sets the distance between x and xP along the tangent direction tP (thus
establishing how far the new particle is from the seeder), the parameter a has to be determined in order to place the new
oriented particle upon the circle O osculating C at xP . To this aim, Eq. (19) can be rewritten in terms of components, by
exploiting Eqs. (2) and (21), in the following form
/ ¼ /P þ nijr/jðbti þ aniÞ þ
1
2

/;ijðbti þ aniÞðbtj þ anjÞ ¼ ajr/j þ 1
2

/;ij a2ninj þ 2abnitj þ b2titj

 �

þ OðD2Þ ð22Þ
Both the particles at xP and at the new position x lie on C, so that /P ¼ / ¼ 0. Moreover, from geometrical considerations we
have
a ¼ b2 ~j
2
þ Oðb3Þ ð23Þ

Fig. 20. On the left, the choice of a (unit) vector t tangent to C at xP identifies the plane a (containing t and n) and a curve C on the interface, characterized
by an osculating circle O at xP . The right figure shows the geometrical quantities used to evaluate the order of magnitude of the parameter a.

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1371
where ~j is the normal curvature, i.e. the curvature for the surface curve ðCÞ whose tangent is t. Eq. (23) can be proved by
looking at the right Fig. 20, where a sketch of the circle O osculating C at xP is reported. First of all, the arc length s is given
by
s ¼ 2rh ¼ 2h~j�1
whereas the chord from xP to x is
l ¼ 2r sin h ¼ 2r sin
s

2r

�

Then
b ¼ l cos h ¼ 2r sin
s

2r

�
cos

s
2r

�
¼ r sin

s
r

�
¼ s� 1

3!
~j2s3 þ Oðs5Þ
where, of course, the last equality arises from a series expansion of the sine function. Therefore, if we move along the curve of
a quantity s ¼ OðDÞ, then b ¼ Dþ OðD3Þ. Consequently,
a ¼ b tan h ¼ b tan
s

2r

�
¼ b

s
2r
þ Oðs3Þ ¼ s2 ~j

2
þ Oðs3Þ ¼ b2 ~j

2
þ Oðb3Þ
Due to the evaluated order of magnitude of a, Eq. (22) can be rewritten up to second order in the form
ajr/j þ 1
2

/;ijtitjb
2 þ Oðb3Þ ¼ 0 ð24Þ
being b ¼ OðDÞ. From Eq. (20), we have
/;ijtitj ¼ jr/jni;jtitj
so that (under the assumption jr/j– 0)
aþ 1
2

ni;jtitjb
2 þ Oðb3Þ ¼ 0 ð25Þ
where a depends only on known quantities. It’s worth noting that, except for the sign, the term ni;jtitj exactly corresponds to
the aforementioned normal curvature ~j of the circle osculating C at xP . In fact, from the Frenet formulae
dt
ds
¼ ĵn
we have (being t � n ¼ 0)
ĵ ¼ n � dt
ds
¼ �t � dn

ds
¼ �t � ðrn � tÞ ð26Þ
Finally, the coordinates of the new oriented particle on C are provided by Eq. (21) rewritten (in terms of components) in the
form
xnew
i ¼ xi þ bti �

1
2

nk;ltktlni ¼ xi þ bti þ
1
2

~jni ð27Þ

1372 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
Once the position of the new particle is computed, its normal vector can be assumed equal to
Fig. 21
nnew
i ¼ ni þ

@ni

@xj
x new

j � xP
j

�
ð28Þ
while for the curvature tensor we simply put
rnjxnew � rnjxP
ð29Þ
As to the tangent unit vectors t to be used in the choice of the new particle, different strategies can be adopted. A good
choice could be the computation of the eigenvectors of the shape operator in order to define the local tangent directions cor-
responding to the principal curvatures of C at xP . Alternatively, we can initialize the tangent vectors by simply choosing two
orthogonal directions (for example, by Eqs. (16) and (17)) and setting their initial modulus to a suitable value (see next sec-
tion). This approach is very simple and has been adopted in the present implementation. Although we can locate any particle
by simply rotating a single tangent vector, in the application we have limited the seeding process to four new particles for
each seeder, by using the aforementioned tangent vectors t1 and t2 and the corresponding opposite ones (�t1 and �t2).

The seeding procedure has been tested on a sphere, where the requested quantities have already been determined by
treating the Enright problem. Fig. 21 shows a starting distribution of 800 markers located on a sphere with r ¼ 1 and two
different results achieved by the seeding algorithm, the first being obtained by setting the parameter b to 0.025 (center fig-
ure) and the second by setting it to 0.05 (right figure). As expected, a larger value for b scatters the new particles on a wider
region and yields a more uniform distribution of markers; this is exactly what we want, in order to avoid the occurrence of
interface regions affected by a dangerous lack of particles as much as possible. On the other hand, by moving far from xP , the
numerical approximations related to the seeding process increase so that a suitable compromise is required, according to
many other parameters (the spatial mesh resolution, the starting particles distribution, the time step, etc.).

7.2. The self-adaptive mechanism

At this stage, we can focus our attention on where to locate the new particles or, in other words, when to switch on the
seeding process. The insertion of additional oriented particles is related to the stretching of the interface that causes a local
depletion of markers. Intuitively, this stretching could be evaluated through the (maximum) distance between the markers,
but such an approach is not convenient and would require a significant increase of the computational effort. Actually, we
could limit the computation of this distance to each cell of the numerical domain or to a prescribed influence region around
each particle, but, in any case, this approach would introduce an undesired link among the markers. For this reason, it is pref-
erable to switch on the seeding process on the basis of a direct estimation of the local interface stretching. According to our
discussion on the meaning and the behaviour of the tangent vector t, at each point xP this stretching can be estimated by
rP ¼ jtPj ð30Þ
When rP exceeds a prescribed limit value rmax the particle is recognized as a seeder and new particles around xP are added
upon C through the relations derived in the previous section. Obviously, the limit value rmax characterizes the procedure and
must be selected in a suitable way. Generally speaking, a small value can provide an excellent distribution of particles and a
very accurate reconstruction of C, but also a notable increase of both the CPU time and the arrays storage requirements. On
the other hand, a too large limit can make the seeding process ineffective. It’s worth noting that the unstructured nature of
the algorithm allows an easy handling of data, as the new quantities can be simply appended to the corresponding arrays, no
re-ordering being needed.

In order to better understand the activation of the seeding procedure, let us focus our attention on the numerical simu-
lation of an expanding sphere. To this aim, we account for a unit computational domain discretized by a 503 mesh and a
centered sphere of radius r ¼ 0:1, where we placed 554 oriented particles (23 markers on each of 24 semi-meridians, plus
two markers on poles). Note that, at each point on the sphere, the starting (mean) curvature is equal to the sum of the two
principal curvatures, so that j0 ¼ 2=r ¼ 20 at any xP . The front moves normal to itself (ui ¼ juj ni, where we set juj ¼ 0:1) so
. Particles distributions provided by the seeding algorithm on a unit sphere for two different values for b . Each particle produces four markers.

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1373
that Eqs. (15) and (18) provide the starting values for n and rn, while the derivatives of the velocity to be used in Eqs. (7)
and (9) are determined by
Fig. 22.
combin
uj;k ¼ juj
1
r
ðdjk � njnkÞ

� �

uj;ks ¼ juj �
ns

r2 djk �
nj

r
nk;s �

nk

r
nj;s þ

njnkns

r2

h i
¼ � juj

r
½nj nk;s þ nk nj;s þ nsnj;k� ð31Þ
The prescribed expanding motion causes the radius of the spherical front to increase, but the rather coarse distribution of
particles used for the simulation soon becomes insufficient to determine the Level-Set function at the mesh nodes; thus, the
interface is not tracked in the correct way. Fig. 22 shows the zero level of the / function and the corresponding location of the
oriented particles at t ¼ 0 (on the left) and at the end of our simulation ðt ¼ 3Þ. In particular, the center figure depicts the
interface determined by the only use of the oriented particles and highlights the inadequacy of the starting distribution
to follow the evolution of C. On the contrary, the right picture shows the same result as determined by the aid of the trans-
port equation for /: the resulting interface is certainly improved, but significant errors still affect the numerical solution.

In order to simulate the expanding sphere correctly, it’s clear that we need to refine the markers distribution. To this aim,
we account for a system of curvilinear coordinates n;g upon C0 and set the (four) tangent vectors at the oriented particle
xPðn;gÞ in the following form
t1 ¼
xnþ1;g � xn�1;g

2
; t2 ¼

xn;gþ1 � xn;g�1

2
; t3 ¼ �t1; t4 ¼ �t2 ð32Þ
In this way, the module of the t vectors define the (averaged) distance of the particle from the neighbouring markers. Then,
we switch on the seeding algorithm, by setting the following seeding criterium
jtjmax ¼ rmax ¼
D
2

ð33Þ
where D is the spatial cell size in our (uniform) Cartesian mesh. In practice, this condition forces the distance between two
neighbouring particles to be less or equal to half a cell size: when the module of a t vector (evolving by Eq. (13)) exceeds this
value, the corresponding oriented particle becomes a seeder. For simplicity, the tangent vectors of each new marker xnew are
computed through Eqs. (16) and (17), while their module, as well as the value jtj of the seeder itself, are (re)set to the new
distance jxnew � xP j. Moreover, the added particles are placed around each seeder by setting the value b of Eq. (27) equal to
D=3. This mechanism has been proved to be very effective to refine the markers distribution upon C.

Left Fig. 23 shows an XZ-view of the starting interface C0 and three subsequent configurations (at t ¼ 1, 2 and 3), rendered
by the zero level of the function / and a suitable level of transparency so as to show the accuracy and correctness of the
spherical evolving front. Moreover, the figure highlights a generic particle of the starting distribution, whose curvature, com-
puted by Eq. (13), is reported in the right picture with the corresponding radius rP ¼ 2=jP (scaled by a factor 10). As ex-
pected, the values of the increased radius matches the subsequent C configurations perfectly. The table in Fig. 23 also
lists the overall number of markers used to determine the zero level of /, and it’s quite clear that the procedure guarantees
a very fine particles distribution on C at each time step.

It is to be noted that the seeding is carried out by each marker in an independent way, so that an excessive concentration
of particles can easily occur. Even though this behaviour does not affect the accuracy of the tracked interface, it represents a
useless burden in terms of computational effort and should be somehow avoided. For this reason, the algorithm should also
be able to recognize a useless gathering of particles and suitably de-seed the interface. The most intuitive way to realize this
process consists of estimating the relative distance between any original particle and all the newly added markers, and re-
move these last ones when they are both too close and almost parallel, i.e.
The expanding sphere at t ¼ 0 modeled by 554 oriented particles, and at t ¼ 3 as determined by the only use of the markers (center figure) and the
ed use of markers and the transport equation for / (right figure).

Fig. 23. The interface configurations of the expanding sphere at t ¼ 0, 1, 2 and 3 as determined by the aid of the seeding procedure is reported on the left.
The right picture shows the time histories of the curvature jP and the corresponding radius of the evolving front for the generic oriented particle at xP .

Fig. 24.
at t ¼ 3

1374 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
jxp � xaddj 6 dmin

np � nadd P amin with amin ¼ Oð1Þ ð34Þ
If both these relations are satisfied, the added marker xadd does not provide any further information to trace the zero level
of / compared to the particle xP and can be deleted. In other words, each original oriented particle also behaves as a potential
de-seeder so as to optimize, at each time step, the (local) marker distribution upon C. Furthermore, this procedure preserves
the starting distribution of markers.

As for rmax in the seeding process, the parameters dmin and amin make the de-seeding procedure more or less effective and
must be selected according to the available computational and storing resources. It’s worth noting, from a computational
point of view, that the comparison between each starting particle with all the possible added ones can become very expen-
sive. Then, in order to reduce the requested CPU time, it is convenient to code the procedure in a cell-by-cell way and to
compare the quantities related to each xP with the only markers added in the same cell. To this aim, the conditions (34)
are implemented within the routine devoted to the evaluation of the Level-Set function, where a single loop on Np (the num-
ber of markers) is used to determine the minimum distance between the cell vertices and the oriented particles. There, it is
possible to identify the number of particles contained within each cell Ni;j;k

p

�
and enforce the de-seeding criteria by a double

loop on the particles in each cell instead of the whole set, thus achieving a remarkable CPU saving.
Finally, left Fig. 24 shows the excellent simulation of the expanding sphere as computed by the self-adaptive particles

mechanism, including both the seeding and de-seeding procedure. Still, the b parameter in Eq. (27) is set to D=3, while
On the left, the expanding motion is depicted by the computed interface at t ¼ 0, 1, 2 and 3. The right figure reveals the actual particle distribution
, as determined by the seeding–de-seeding process.

Table 2
Number of oriented particles used by the self-adaptive algorithm to simulate the expanding sphere and corresponding CPU times.

Code/time 0 s 0.5 s 1s s 1.5 s 2s s 2.5 s 3 s CPU

Seed 554 2674 12,794 63,874 63,970 319,370 319,370 37:5m
Seed + de-seed 554 1992 6233 16,474 16,515 36,587 36,648 8:3m

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1375
the de-seeding criteria fix the dmin and amin values to D=6 and 20 degrees, respectively. According to the CFL condition, the
time step is set to 0.0025 and covers a time interval equal to 3 by 1200 steps. Compared to the aforementioned 319,370 par-
ticles on C at t ¼ 3, the last configuration of C is traced by only 36,602 particles and is reported in the right Fig. 24. Table 2
summarizes the number of markers at different steps of the two simulations (with and without the de-seeding) and the
resulting CPU time on the PC equipped with the Xeon processor at 2.5 Ghz. As expected, the gain in the computational effort
is significant.
Fig. 25. Interface time evolution for the Enright test and the corresponding oriented particles distributions as determined by the self-adaptive procedure.

Fig. 26. R- and K-views of the Enright interface at t ¼ 1, as determined by the self-adaptive procedure. Note, on the left, how the added green markers
mainly arrange themselves upon the critical upper region of the interface. The resulting zero level of / is reported on the right. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

1376 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
7.3. The Enright test

Let’s come back to the Enright test to check the capability of our self-adaptive oriented particle Level-Set method in deal-
ing with a critical time evolution of C and solve the numerical problems outlined in Section 6. To this aim, we still account for
the 1003 Cartesian mesh and switch on the self-adaptive procedure used for the expanding sphere, by using the following
values
b ¼ D=3; rmax ¼ D; dmin ¼ D=5; amin ¼ 20
�

An initial distribution of only 9704 oriented particles is used (98 markers on 99 semi-meridians plus the two poles), so
that the seeding procedure starts very soon to fit the particle pattern on the stretched interface. Fig. 25 shows a three-dimen-
sional view of C at subsequent time steps. The red markers represent the starting distribution, while the green ones corre-
spond to the particles added by the self-adaptive procedure; each frame points out the time and the overall number of
particles used to determine the zero level of the / function. The seeding process seems to work very well and provides
an accurate reconstruction of the interface and a fine distribution of particles at each time step. It’s worth noting the last
frame, where the sphere is recomposed perfectly and a lot of added particles are still present; this result somehow proves
the coarseness of the starting distribution of particles and, consequently, the effectiveness of the algorithm to refine the mar-
ker pattern. The R and K-views of both the particles distribution and the zero level of / at t ¼ 1 are reported in Fig. 26. These
pictures should be compared with the analogous result in Fig. 16. As desired, the new markers mainly arrange themselves
along the upper surface of the interface, which suffers the most pronounced stretching and a notable depletion of particles.
No roughness appears in the central region of the manifold and the level of detail attained by the algorithm is very high, as
the interface exhibits an excellent symmetry and, above all, the expected void representation due to the aforementioned lim-
its of the spatial grid resolution.

It can be seen that any numerical problem related to the wrong estimation of the function Sð/Þ is removed, so that no
fictitious mass affect the tracked interface up to the end of the simulation. Note that such an excellent result is obtained
by less than half the number of oriented particles used for the simulation corresponding to Fig. 16, with a large saving of
CPU time. Finally, Fig. 27 shows the R-views of the interface for the Enright problem, here only traced by the zero level
of the function /.
8. Simulation of front merging by particles

At this stage, we come back to the problem summarized in Section 3, since we want to show that the occurrence of merg-
ing fronts can be modeled successfully by lagrangian particles placed on C, provided that their motion is assigned in the cor-

Fig. 27. R-views of the interface configurations for the Enright test, determined by using our self-adaptive oriented particles Level-Set method (1003

uniform Cartesian mesh, starting distribution of 9704 markers, rmax ¼ D; b ¼ D=3;dmin ¼ D=5 and amin ¼ 20
�
).

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1377
rect way. In fact, by a suitable modification of the de-seeding procedure the algorithm can achieve an effective estimation of
an entropy solution, where at any time instant the position of each point on the front can be related to the initial condition
uniquely. To this aim, we have to recognize the points on the interface exhibiting a merging behaviour (through the possible
intersections of their own trajectories) and simply remove the corresponding particles.

Let xn
A be the position at tn of the particle A. The trajectory described by A from tn�1 to tn can be approximated by
xAðgAÞ ¼ xn�1
A þ gAðxn

A � xn�1
A Þ with 0 6 gA 6 1 ð35Þ
and analogously for any other particle B
xBðgBÞ ¼ xn�1
B þ gBðxn

B � xn�1
B Þ with 0 6 gB 6 1 ð36Þ
By removing the constraints on gA and gB (thus accounting for �1 < gA < þ1 and �1 < gB < þ1), these two equations
describes two straight lines in R3, whose distance can be computed by minimizing the distance
dðgA;gBÞ ¼ jxBðgBÞ � xAðgAÞj ð37Þ
with respect to gA and gB. In the hypothesis that

Fig. 28.
the (up

1378 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
R ¼ jxn
B � xn�1

B j2jxn
A � xn�1

A j2 � xn
A � xn�1

A

 �
� xn

B � xn�1
B

 �� �2
– 0 ð38Þ
(i.e. the two lines are not parallel) the general solution of this problem is
gA ¼
�ðdn�1 � dxAÞ ðdxBÞ2 þ ðdn�1 � dxBÞdxAB

R

gB ¼
ðdn�1 � dxBÞ ðdxAÞ2 � ðdn�1 � dxAÞdxAB

R
ð39Þ
where
dn�1 ¼ xn�1
A � xn�1

B

dxA ¼ xn
A � xn�1

A ; dxA ¼ xn
A � xn�1

A

�� ��
dxB ¼ xn

B � xn�1
B ; dxB ¼ xn

B � xn�1
B

�� ��
dxAB ¼ xn

A � xn�1
A

 �
� xn

B � xn�1
B

 �

If gA and gB (computed with the above formulas) are such that
0 6 gA 6 1 and 0 6 gB 6 1 ð40Þ
the trajectories of the particles intersect (within OðDÞ). In this case, a single valued (entropy) solution can be obtained by
simply removing both markers A and B; consequently, conditions (40) can be adopted within our self-adaptive oriented par-
ticles approach as an additional de-seeding criteria to simulate front merging.

As discussed in Section 7, also the conditions (40) should be implemented in a cell-by-cell way to reduce the computa-
tional effort. Therefore, the intersections are determined by a double loop on the particles contained in each cell. In this case,
however, the intersections must be computed for all the particles in each cell and also for the particles that occupied the
The shrinking cube modeled by the self-adaptive method and the front merging de-seeding criteria given by relations (40). Each frame points out
dated) number of particles determined by the de-seeding process and used to compute the zero level of /.

Fig. 29. The left figure shows the (inner) cube C0 and the interface at t ¼ 1;2;3 corresponding to the so-called entropy solution. On the right, the oriented
particles are depicted with different colors: the red markers correspond to the starting distribution, whereas the cyan markers come from the seeding
procedure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380 1379
same cell at the previous time step, since the intersections could take place after the particles reached the cell of the Eulerian
mesh. Note that the procedure requires the displacement of a particle not to exceed the cell size; then, a typical CFL condition
Dt 6
Dx

maxðjujÞ ð41Þ
must be enforced for the time step. Fig. 28 shows the interfaces determined for the shrinking cube test through the front
merging de-seeding criteria. Of course, no particular constraint is considered here on the velocity field and each side of
the cubic front simply moves normal to itself.

In the frames corresponding to t ¼ 0 and t ¼ 3 the (updated) particles distributions are superimposed to the zero level of
/: due to the de-seeding process, the simulation starts with 6 � 104 oriented particles and ends with only 4704 markers,
still uniformly located on each side of the cube. As desired, no front distortion at corners or vertices appear and the shrinking
motion is simulated perfectly. An entropy solution can be also determined for the expanding cube in a very simple way. In
fact, the edges and vertices of the starting front can be modeled by a suitable patch of an elongated cylinder and a sphere,
respectively, with a very small radius, in order to smooth the discontinuities affecting C0. In these regions Eq. (18) is used to
set the starting value of the shape operator (on the cube edges one component of n must be set to zero), while the corre-
sponding derivatives of the velocity components can be still determined by Eq. (31) used for the (very similar) test of the
expanding sphere. The initial distribution of particles on C0 need not to be very fine, because the seeding procedure adds
markers along the expanding front during the evolution.

The left Fig. 29 shows C0 and the interfaces computed at three subsequent steps t ¼ 1, 2 and 3. Still, the cube is centered
in the unit computational domain (with L0 ¼ 0:2), the grid is 1003; juj ¼ 0:1 and the radius of the smoothing patches is set to
L=25. As expected, the cube edges expands to a rounded shape whose radius grows in time. The right Fig. 33 highlights the
oriented particles on C at the end of the simulation ðt ¼ 3Þ, when the starting markers patterns (5376 particles) has been
replaced by an overall distribution of 47,835 particles. These results demonstrate that the oriented particles can be success-
fully used to model any complex time evolution of the interface, even exhibiting a front merging characteristics.
9. Conclusions

A new method for tracking interfaces, based on a coupled use of the Level-Set / function and massless particles, has been
proposed. The high potentiality of a Lagrangian description provided by the markers is fully exploited, by linking the parti-
cles to the fundamental geometrical and topological properties of the interface, as the local normal vector and the corre-
sponding shape operator. The particles enable a step-by-step evaluation of the Level-Set function by a direct solution of
the Eikonal equation and to track the interface (as usual) through the / zero level; in this way, no transport equation for
/ needs to be solved and any diffusion problem related to the calculation of the spatial derivatives of / and the re-initial-
ization process is removed. The particles distribution at each step is modified, according to the deformations undergone
by C during the motion, through an effective self-adaptive mechanism. Each marker behaves both as a seeder, able to enrich
the pattern locally when the interface exhibits a notable stretching, and a de-seeder, in presence of an excessive (and useless)
concentration of markers. Thus, a high accuracy to the interface reconstruction process can be achieved in a limited CPU
time. The method has been successfully tested on different and standard problems, both in 2D and 3D, and will be soon in-
serted in a Navier–Stokes solver for complex hydrodynamic simulations.

1380 S. Ianniello, A. Di Mascio / Journal of Computational Physics 229 (2010) 1353–1380
References

[1] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Physics of Fluids 8 (1965)
2182–2189.

[2] S. Chen, D.B. Johnson, P.E. Raad, D. Fadda, The surface marker and micro-cell method, International Journal of Numerical Methods in Fluids 25 (1997)
749–778.

[3] C.W. Hirt, B.D. Nichols, Fundamentals of the KRAKEN Code, Report ucir-760 Lawrence Livermore National Laboratory, 1974.
[4] W. Noh, P. Woodward, SLIC – simple line interface calculation, in: A.V. Vooren, P. Zandbergen (Eds.) Proceedings of the Fifth International Conference

on Fluid Dynamics, Lecture Notes in Physics, vol. 59, Springer, 1976, p. 330.
[5] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981) 201–225.
[6] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER, Journal of

Computational Physics 113 (1994) 134.
[7] D. Gueyffier, A. Nadim, J. Li, R. Scardovelli, S. Zaleski, Volume-of-fluid interface Trackinh with smoothed surface stress methods for three-dimensional

flows, Journal of Computational Physics 152 (1998) 423–456.
[8] D.L. Youngs, Time-dependent Multi-material Flow with Large Fluid Distortion, Numerical Methods for Fluid Dynamics, Academic Press, New York,

1982.
[9] J.M. Martinez, X. Chesneau, B. Zeghmati, A new curvature technique calculation for surface tension contribution in PLIC-VOF method, Computational

Mechanics 37 (2006) 182–193.
[10] W.J. Rider, D.B. Kothe, Reconstructing volume tracking, Journal of Computational Physics 141 (1998) 112–152.
[11] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flows, Annual Review of Fluid Mechanics 31 (1999) 567–603.
[12] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithm based on Hamilton–Jacobi formulations, Journal of

Computational Physics 79 (1988) 12–49.
[13] M. Sussman, P. Smereka, S. Osher, A level-set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics

114 (1994) 146–159.
[14] M. Sussman, E. Fatemi, An efficient interface preserving level-set re-distancing algorithm and its application to interfacial incompressible fluid flow,

SIAM Journal of Scientific Computing 20 (1999) 1165.
[15] D. Peng, B. Merriman, S. Osher, H. Zhao, M. Kang, A PDE-based fast local level-set method, Journal of Computational Physics 155 (1999) 410–438.
[16] G. Russo, P. Smereka, A remark on computing distance functions, Journal of Computational Physics 163 (2003) 51–67.
[17] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics 100 (1992) 25–

37.
[18] E. Aulisa, S. Manservisi, R. Scardovelli, A mixed markers and VOF method for the reconstruction and advection of interfaces in two-phase and free-

boundary flows, Journal of Computational Physics 188 (2003) 611–639.
[19] E. Aulisa, S. Manservisi, R. Scardovelli, A surface marker algorithm coupled to an area-preserving redistribution method for 3D interface tracking,

Journal of Computational Physics 197 (2004) 555–584.
[20] M. Sussman, E. Puckett, A coupled level-set and VOF method for computing 3D and axisymmetric incompressible two-phase flows, Journal of

Computational Physics 162 (2000) 301.
[21] M. Sussman, A second order coupled level-set and volume of fluid method for computing growth and collapse of vapour bubbles, Journal of

Computational Physics 187 (2003) 110–136.
[22] M. Sussman, K.M. Smith, M.Y. Hussaini, M. Otha, R. Zhi-Wei, A sharp interface method for incompressible two-phase flows, Journal of Computational

Physics 221 (2007) 469–505.
[23] D.J. Torres, J.U. Brackbill, The point-set method: front-tracking without connectivity, Journal of Computational Physics 165 (2000) 201–218.
[24] C. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics 25 (1977) 220–252.
[25] R. Mittal, G. Iaccarino, Immersed boundary methods, Annual Review of Fluid Mechanics 37 (2005) 239–261.
[26] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and applications to non-spherical stars, Monthly Notices of the Royal

Astronomical Society 181 (1977) 375–389.
[27] J.J. Monaghan, Simulating free surface flows with SPH, Journal of Computational Physics 110 (1994) 399–406.
[28] J.J. Monaghan, Smoothed particle hydrodynamics, Reports on Progress in Physics 68 (2005) 1703–1759.
[29] R. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of

Computational Physics 152 (1999) 457–492.
[30] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level-set method for improved interface capturing, Journal of Computational Physics 183

(2002) 83–116.
[31] D. Enright, F. Losasso, R. Fedkiw, A fast and accurate semi-Lagrangian particle level-set method, Computers and Structures 83 (2005) 479–490.
[32] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 153, Springer, 2003.
[33] J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and

Materials Science, Cambridge University Press, 1999.
[34] D. Adalsteinsson, J.A. Sethian, The fast construction of extension velocities in level-set methods, Journal of Computational Physics 148 (1999) 2–22.
[35] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics 31 (1979) 335–362.
[36] H. Zhao, A fast sweeping method for Eikonal equations, Mathematics of Computation 74 (250) (2004) 603–627.
[37] R. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM Journal of Numerical Analysis 33 (1996) 627.
[38] M. Kang, R. Fedkiw, X.D. Liu, A boundary condition capturing method for multiphase incompressible flow, Journal of Computational Physics 15 (2000)

323–360.

	A self-adaptive oriented particles Level-Set method for tracking interfaces
	Introduction
	Summary of Level-Set methods
	Lagrangian markers and merging fronts
	The oriented particles
	Evolution equations for the second fundamental tensor and the tangent vectors
	Failure of the algorithm
	The self-adaptive oriented particle Level-Set method
	The seeding algorithm
	The self-adaptive mechanism
	The Enright test

	Simulation of front merging by particles
	Conclusions
	References

